

PAR-00	03-101504	4 Seat	No

B. Sc. (Sem. V) (CBCS) (W.I.F. 2016) Examination

October / November - 2018

Statistics: S - 503

(Statistical Inference)

Faculty Code: 003

Subject Code: 1015044

Gubjeet Goue : 1010044					
Time : 2:	:30 Ho	urs]	[Total Marks : 7	70	
Instruct	ions :	(1) (2) (3)	All questions are compulsory. All questions carry equal marks. Student can use their own scientific calculators	r.	
1 (a)	(1)	Γhe d estima	ifference between the expected value of an ator and the value of the corresponding teters is known as	4	

- (2) If an estimator T_n converges in probability to the parametric function $\tau(\theta)$, T_n is said to be a estimator.
- (3) If the expected value of an estimator T_n is equal to the value of the parameter θ , T_n is said to be _____ estimator of θ .
- (4) An estimator T_n which is most concentrated about parameter θ is the _____ estimator.
- (b) Write any **one**:
 - (1) Obtain an unbiased estimator of θ for Poisson distribution.
 - (2) Obtain sufficient estimator of θ for $f(x, \theta) = \theta e^{-\theta x}$ where $0 \le x \le \infty$.

(c)	Write	anv	one
(0)	* * 1100	CLLL Y	OHC

- 3
- (1) Obtain consistent estimator of μ for Normal distribution.
- (2) If $t'' = \frac{1}{2}(t+t')$ where t and t' is the most efficient estimator with variance v then prove that $Var(t'') = \frac{1}{2}v(1+\sqrt{e})$.
- (d) Write any one:

- 5
- (1) If $x \sim N(\mu, \sigma^2)$ and μ is known then obtain unbiased estimator of σ .
- (2) If T_1 and T_2 be two unbiased estimator of θ with variance σ_1^2 , σ_2^2 and correlation ρ , what is the best unbiased linear combination of T_1 and T_2 and what is the variance of such combination?
- 2 (a) Give the answer of following question:

4

- (1) If T_1 and T_2 are two MVU estimator for $T(\theta)$, then _____.
- (2) An estimator of $v_{\theta}(T_n)$ which attains lower bound for all θ is known as _____.
- (3) An unbiased and complete statistic is a _____ estimator provided MVUE exists.
- (4) For discrete variable Crammer-Rao inequality
- (b) Write any one:

- (1) Obtain MVUE of parameter p for Binomial distribution.
- (2) Define Minimum Variance Bound Estimator.

(c) Write any one:

- 3
- (1) Obtain MVUE and MVBE of θ for Poisson distribution.
- (2) Independent observation x_1 , x_2 , x_3 ,, x_n taken from the following density function

$$f(x, \theta) = \frac{1}{\theta} e^{-\left(\frac{x}{\theta}\right)}$$
; where $0 \le x \le \infty$

Find the Cramer Rao Lower Bound for variance of unbiased estimator of θ .

(d) Write any one:

5

- (1) State and prove Cramer-Rao Inequality.
- (2) Obtain MVUE and MVBE of σ^2 for Normal distribution.
- 3 (a) Give the answer of following question:

4

- (1) A value of a parameter θ which maximize the likelihood function is known as _____ estimate θ .
- (2) Maximum likelihood estimate of the parameter θ of the distribution $f(x, \theta) = \frac{1}{2} e^{-|x \theta|}$ is
- (3) For a Gama (x, α, λ) distribution with λ known, the maximum likelihood estimate of α is
- (4) Minimum Chi-square estimators are not necessarily
- (b) Write any one:

 $\mathbf{2}$

- (1) Obtain likelihood function of Negative Binomial distribution.
- (2) Estimate parameter θ by the method of moment for the following distribution $f(x, \theta) = \frac{1}{\theta}x$; where $0 \le x \le 1$.

(c) Write any one:

- (1) Obtain MLE of parameter p for the distribution $f(x, p) = pq^x$; where $x = 0, 1, 2, ..., \infty$.
- (2) Estimate parameters α and β by the method of moment for the following distribution

$$f(x, \alpha, \beta) = \frac{\alpha^{\beta}}{\overline{\beta}} e^{-\alpha x} x^{\beta - 1}; \text{ where } x \ge 0, \alpha > 0.$$

(d) Write any one

:5

(1) Obtain MLE of α and λ for the following distribution

$$f(x, \alpha, \lambda) = \frac{1}{|\overline{\lambda}|} \left(\frac{\lambda}{\alpha}\right)^{\lambda} e^{-\left(\frac{\lambda}{\alpha}\right)^{x}} x^{\lambda - 1}; \text{ where } 0 \le x \le \infty, \lambda > 0$$
where $\varphi(\lambda) = \frac{\partial}{\partial \lambda} \log |\overline{\lambda}| = \log \lambda - \frac{1}{2\lambda} \text{ thus,}$

$$\varphi'(\lambda) = \frac{1}{\lambda} + \frac{1}{2\lambda^{2}}.$$

(2) For the double Poisson distribution

$$P(X = x) = \frac{1}{2} \frac{e^{-m_1} m_1^x}{r!} + \frac{1}{2} \frac{e^{-m_2} m_2^x}{r!}; 0, 1, 2,$$

Show that the estimator for m_1 and m_2 by the method of moment are $\mu_1' \pm \sqrt{\mu_2' - \mu_1' - \left(\mu_1'\right)^2}$.

4 (a) Give the answer of following question:

- (1) Accepting H_0 when H_0 is false is _____ error.
- (2) Probability of _____ error is called level of significance.
- (3) If β is the probability of type II error, the power of the test is _____.
- (4) A null hypothesis is rejected if the value of a test statistics lies in the _____.

(b) Write any one:

2

- (1) Define MP test.
- (2) Given a random sample $x_1, x_2, x_3, \ldots, x_n$ from the distribution with pdf $f(x, \theta) = \frac{1}{\theta}$; where $0 \le x \le \theta$. Obtain power of the test for testing $H_0: \theta = 1.5$ against $H_1: \theta = 2.5$ where $c = \{x: x \ge 0.8\}$.
- (c) Write any one:

3

(1) Give a random sample $x_1, x_2, x_3, \dots, x_n$ from distribution with p.d.f.

$$f(x;\theta) = \theta e^{-\theta x}; 0 \le x \le \infty, \theta > 0$$

Use the Neyman Pearson Lemma to obtain the best critical region for testing $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$.

- (2) Let be the probability that coin will fall head in a single toss in order to test $H_0: p = \frac{1}{2}$ against $H_1: p = \frac{3}{4}$. The coin is tossed 5 times and H_0 is rejected if more than 3 heads are obtained. Find the probability of type-I error, type-II error and power of test.
- (d) Write any one:

- (1) State and prove the Neyman-Pearson Lemma.
- (2) Use Neyman-Pearson Lemma to obtain the best critical region for testing $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$ in the case of Normal distribution $N\left(\theta, \sigma^2\right)$ where σ^2 is known.

- 5 (a) Give the answer of following question:
 - (1) Likelihood Ratio test for testing a hypothesis, simple or composite, against a _____ or ____ alternative hypothesis.
 - (2) Likelihood Ratio test is relation the maximum estimates.
 - (3) To decide about H_0 , SPRT involves _____ regions.
 - (4) The decision criteria in SPRT depends on the function of _____ and ____ errors.
 - (b) Write any **one**:
 - (1) Define UMP test.
 - (2) Define ASN function of SPRT.
 - (c) Write any one:
 - (1) Construct SPRT of Binomial distribution for testing $H_0: \theta = p_0$ against $H_1: \theta = p_1 (> p_0)$.
 - (2) Write the properties of Likelihood Ratio test.
 - (d) Write any **one**:
 - (1) Let sample distribution $x_1, x_2, x_3, \dots, x_n$ taken from

$$f(x,\theta) = \frac{1}{\sqrt{2\pi}} e^{-\left\{\frac{(x-\theta)^2}{2}\right\}} \text{ where } -\infty \le x \le \infty, -\infty \le \theta \le \infty$$

To Likelihood Ratio $H_0: \theta \le \theta_0$ against $H_1: \theta > \theta_0$.

(2) Give the SPRT for test $H_0: \lambda = \lambda_0$ against $H_1: \lambda = \lambda_1 (> \lambda_0)$, in sampling from a Poisson distribution. Also obtain its OC and ASN function.

2